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ABSTRACT

The dependence of the optimal nonlinear filter on it's initial conditions is

considered for continuous time linear filtering and for finite state space nonlinear

filtering. Partial results are obtained in the high signal to noise ration case,

together with a characterization of the Lyapunov exponent in the (easier) low SNR

case.
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1. INTRODUCTION

In this note, we consider the dependence of the conditional density in the

nonlinear filtering problem on the initial a-priori distribution of the state. From a

practical point of view, one is often interested in knowing how long does he have to

wait to reach near optimality when initiating the optimal filter with the wrong initial

conditions.

Our purpose in this note is mainly to expose the problem. Despite our

efforts, we have at the moment only very partial results, mainly of an asymptotic

nature, which will be explained below. Even those results, however, exhibit

interesting features: it turns out that, at the limit of high signal to noise ratios,

structural properties of the process and mainly of its observations dominate the

memory length.

The models we consider are of one of the following types:

(a) Finite state space in white noise. The state process x is a

continuous time, ergodic, stationary Markov chains with values { 1,2,...,k}, and

with an infinitesimal generator G = {gij I 1<ijk, where if Pij(e) = P(x(t+£) = j I(x(t)

= i), then

Pii(£) = 1 + gii£ + o(£) (1.1)

Pij(6) = gije + o (e) j # i

The observation process {Yt, t>_0} satisfies

1/2
dyt = h(xt)dt + No dbt (1.2)

where bt is a one dimensional Brownian motion independent of xt and h =

{h(i) } l<ig is a given vector.

(b) Rational Gaussian process in white noise. The state process

xt e R n satisfies the linear, stochastic differential equation

dx = Axtdt + Bdwt, p(x0 ) = N(mo, P0 ) (1.3)
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with wt being an n-dimensional Brownian motion, A,B given constant matrices of

appropriate dimensions, and p(xo), the initial a-priori density of xo, is normal with

mean mo and covariance matrix Po. The observation process Yt e R m satisfies

1/2
dyt = Cxtdt + N0 db t (1.4)

where here bt is an m-dimensional Brownian motion independent of xt and C is

again a constant given matrix.

(We remark that a natural candidate for model instead of (1.3), (1.4) is the

general diffusion nonlinear filtering problem; a remark concerning it can be found in

the end of section 3).

We define now the notion of "memory length". In both cases, let

Po A
Pt (x) = PP(xt = xly s, O<s<t) (1.5)

denote the conditional distribution (density in case b) of xt, given an initial a-priori

distribution (density in case b) po.

The "memory length" y is defined as follows:

Ai1 Po Po
(casea) y= sup limsup -log liP t -P (1.6a)

P0P0 t- oo

where II II denotes the Euclidean norm and

(case b) y- sup lim sup t log llN t(mo, Po) - t(mO, po)ll (1.6b)
0rb nm eK t --)

where xt(mo, po) is the conditional mean starting from N(mo, P0) and K is some

compact set. In both cases, y is a reminiscent of the usual definition of Lyapunov

exponents. In (1.6b), we consider xt because, the conditional density being

Gaussian, it best characterizes the distribution. We could also allow Po to change,

for brevity we do not do that here, even though the analysis is exactly the same.

In both cases (a), (b), as No -- 0, y will tend to the closest to zero (in real

part) negative eigenvalue of G in case a and pole in case b. As NO -- 0, ("high

signal to noise"), surprisingly, y -) -c necessarily (this is however the case when
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n=m=l, CAO in case (b) and k=2, hl-h2 is case (a)). For case a, we provide an

example where y - O as No -- 0, whereas in case (b), the complete analysis of

section 3 shows that if the "transfer function" of (1.3), (1.4) possesses zeroes on

the imaginary axis, y -> 0 as No-- 0, and otherwise y - -oo as No -- 0. Thus,

structural properties of the system involved determine it's "forgiveness" of initial

mistakes, even in high signal to noise ratios!

The remain of the paper in organized as follows: in section 2, case a is

presented; the analysis as No -> oo, an example with y -- 0 as No -e 0 and the k=2

cases are considered. The difficulties in the general case are also pointed out. In

Section 3, the Gaussian case b is presented, with the full asymptotic analysis of No

-- 0.

Acknowledgements. We wish to thank Prof. A. Willsky for many fruitful

discussions.
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2. FINITE STATE SPACE CASE

In this section, we consider case a. We start by considering the 'high-

noise" behavior:

Theorem 1: If the process xt is ergodic, there exist two positive constants c and

K0 such that , for No > K0,

lim 1 logllpPt - 11 < - £ a.e. (2.1)
t -- oo

Moreover, as No -- oo, E - Xmax(G), the largest non zero real part of the

eigenvalues of G.

Proof. Let H denote the diagonal matrix with Hii = h(i). Then, from Wonham

[1],

dp t = PtGdt - N' <pt,h>pt(H - <pt,h>I)dt

+ No Pt(H - <pt,h>I)dyt (2.2)

Note that for proving (2.1), it is enough to consider the equation satisfied by the

derivative qt of Pt with respect to the initial conditions Po in any direction d =

(dl...dk). From (2), one has:

-1
dqt = qtG dt - N0o <qt,h>pt(HI - <pt,h>I)dt

-N1 <pt,h>qt(H - <pt,h>I)dt + No <Pt,h>Pt<qt,h>dt

+ No qt(H - <pt,h>I)dy - No p<qt,h>dyt =
NJ1q1hpj-hI T dt + P 1/2t

-1/2
-N O <qt,h>ptdvt

dyt- <Pt, h>dt
where dvt = is the innovation white noise andh = <h,pt>.

0
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dqt = qt(G + NO At)dt + No/ qtBtdv t (2.3)
qO = d

where At and Bt are two matrix valued measurable processes, and there exists a

constant a depending only on h such that:

IIA 11 < co

IIBt 11 < a all t, No

almost surely (11 II denotes the usual norm of matrices).

Note that the hyperspace E = {q, <q,l> = 0} (where 1 = (1,....,1)T) is

stable under G, At and Bt because

G1 =0

Atl = (hpt)(H- <pt,h>I)1 = (hpt)(h - <Pt' h>l) = 1

and if qe E:

qBtl = q(H-<pt,h>I)1 - <q,h><pt,l>

= <q,h> - <q,h> = 0

But the constraint on po:

X Po(i) = 1

implies that qo has to be choosen in E, and qt remains in E. Choosing any fixed

orthogonal base in E, (2.3) can be rewritten as:

dq t = q (G' + No1A t)dt + N-o qt Btdvt (2.4)

where q't = (q't (1),...,q't(k-1)) is a representation of qt in this base; G', A't and

B't are the matrices associated to the restriction to E of the applications represented
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by G, At and Bt in the whole space. Moreover, the spectrum of G' is the spectrum

of G without the eigenvalue zero, and then, by the assumption of ergodicity, all the

eigenvalues of G' have negative real part.

Let S be a symetric positive matrix and denote:

Trt = q'Sq T

-1/2
Ut = rt q

then:

dr t = q;(G'S + SG 'T + No (AtS + SA;T ))qt dt

+ N0
1/ 2qt (BtS +SBIT)q'Tdvt

+ NO1 qt B SB t qT dt
T T l2S IT T

= rtut(G'S + S G' + No (2AS + BtSB ))u dt
-1/2 T

+ 2No rtutBtSu tdvt

using Ito's formula, we get:

d log rt = ut(G'S + SG'T + No (2A'tS + BtSB'tj)u t dt
-1 2 -1/2 T- 2No (utB' Sut) d t + 2No utBtSutdvt

and then:

-log rt < 1 log rO + -J U(G'S + SG )uT ds

0
t

+-N1 N | u (2A' S + B'SBuT dst B:SB:ud
0

t

+- 2No1/2 uJB' SuT dvs (2.5)
t 0

-o

Let X be the real part of the largest eigenvalue of G' and choose gt > %, then the

matrix H = G' - PI is still a stability matrix and there exist symetric S such that:
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HS + SH T = -I

for this choice of S, the second term of (2.5) is bounded by 2ti and the third term is

smaller than N-20 cl(S) (where cl(S) is a constant depending only on S). For the

last term, consider the time change:

t

= |J (UsBoSu s) ds
0

then, we know that there exists a brownian motion Bt such that:

tJ u B'SuTdv: =B
0

and then:

1 i u B'SuTdv IB I <C2(t s s s s t Zt Z
0 t

where c2(S) is constant depending only on S. This proves that the last term tends

to zero as t tends to infinity (if ct is bounded, use the last equality, if zt tends to

infinity, use the last inequality). Finally, we get

lim sup tlog r t < 2g + N o lcl(S)
t - oo

and then, by the equivalence of the norms of Rk:

limsup logllqtll < + No cl(S)

which is arbitrarily close to X if No is large enough.

We consider next the case No -- O0. For k = 2, equation (2.4) is one

dimensional, A't < 0 and therefore,
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N -->
(2.6)

One is led to think that this situation is generic; our conjecture is that indeed

it is, under suitable "structural conditions", which we don't know at this point to

specify. The problem is that eq. (2.4) is a Bilinear equation with non-constant

coefficients, and the known methods of computing the Lyapunov exponent fail.

The following counter example demonstrates clearly that (2.4) does not hold in

general without restrictions; actually, in this example, y -- 0!

Consider the four state process with transition matrix:

-1 1

G= -1 1 (2.7)

c.f. fig. 1. The observation vector is

h(xl) = h(x3) = h, h(x2) = h(x4) = 0 (2.8)

Note that the fact that h(x2) = 0 is not significant, as the addition of a d.c. term to

h(x) does not change the filter's structure. The fact that the observations are the

same for different states is of extreme significant, as the following intuitive

argument demonstrates: indeed, note that as No -- o%, by theorem 1, the Lyapunov

exponent of the optimal filter converges to 1, and the conditional distribution

converges to the stationary distribution regardless of the initial conditions.
However, as No -- 0, consider the two initial conditions:

(1,0,0,0) and (0,0,1,0)

The fact that No -0 O allows us to track accurately the transitions in the system, but

reveals nothing as to the initial conditions and thus the state estimate will highly

depend on p(O). Thus, we expect that the Lyapunov exponent will go to zero as
No -- 0; the following analysis will show that this is indeed the case. For

simplicity, we make the change of variables:
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Pl(t) 1

pl(t) + P3(t) P 1
A(t)= 1, where - (2.9)

P4(t) 1 2
P 2(t) + p4 (t) 2 Pl = P3 = 0

A(t) reflects the "mismatch" with the stationary solution pi = P2 = p3 = p4 = 1/4,

where A=0; we analyze the Lyapunov exponent of A(t), which is easily seen to

have the same behavior as that of x(t). It is easily seen that vt is the same under

initial conditions dl or d3 (which correspond to A1(0) = , A3(0)= (0/2)) Note

however that, by an easy computation based on (2.2), A(t) satisfies:

A (t) = _1/71 -'/Yt A(t)

where

hi/N h01
dyt= [1 + dt1 -1 dt /2 tdvt

and Yt is highly oscillatory. Analysing directly eq. (3.4) is rather difficult;

fortunately enough, (3.5) is easy to simulate; for

Al
- lim logllA(t)ll,

t

the results are summarized in table 1, which agrees with the heuristic analysis

above.

N o 10 1 0.2 0.1 0.05 0.02

)~ - 1 -0.89 -0.53 -0.21 -0.085 -0.021

Table 1. Lyapunov exponent as function of N01/2



3. THE GAUSSIAN CASE

In this section, we analyze the "memory length" of the optimal filter for the

Kalman filtering problem (Case b). Surprisingly enough, there are cases where the

memory length does not tend to zero when the signal to noise ratio is high, even in

the fully observable case, c.f. below.

We assume throughout that the pair (A,C) is observable and that (A,B) is

stabilizable (c.f. [2]).

Our results are summarized below:

Theorem 2:

a) For No -- oo, - Xmax (A), where Xmax(A) is defined as in

Theorem 1.

b) For NO -- 0, let 4(s) = det (sI-A),

H(s) = C(sI-A)-1B

Let

e A {lIRe 0 < 0, O (s) 0(-s) det[H (s)H(s)] = 0}

Then y -- (max(0), where emax(0) is the element of e with largest real

part.

Proof. The optimal filter equations are (c.f. [5]):

dx= Axtdt + K(t)[dy t - C tdt] (3.1)

where K(t) = P(t) CT/No and

tT +T PCTCP
P(t) = AP(t)+ P(t)A +BB - N (3.2)

o
Under our assumptions, P(t) -- Po,. Note that (3.1) implies that, if we denote by

x t(xo) and x t(X0) the output of the filter with x o(Xo) = xo , x o(X5 ) = xo and by

At (X) - x t(Xo ), then
T

A=AA- P(t)CC
N 

0
from which (a) follows from the boundedness of P(t) and NO - oo.
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To see (b), we consider first the case of P(O) = Po; in that case, (b) is a

rephrasin of [2, theorem 4.13]. In the general case (P0 = 0), let
P(t)-P 

T =inftl IP-PNo IICTCll <eforallt>T}. Fort > T one has

At A P c A (P(t) -P ) T

A~t= A ~0 t No

=(A - 00 Cc)At - K (3.6)

and IIK tl < E.

By the argument below (2.4) (taking there Bt = 0, No A'= Kt and

PooCTC
G'= A - N ), one obtains that

i p CTC 

P eeC1;max A -N O -

<X< X A- + £Cmax N

where C1 depends on G' and is independent of E and where Xmax(A -NP )

PCTC
denotes the largest real part of the eigenvalues of A - NO which is negative by

the stability of the optimal filter ([2]). Taking e - O leads to X = Xmax(A -

P.CTC
No ). Taking now No -> 0 yields the theorem. 11

We remark that the theorem implies that even for a stable, controllable and

fully observable system, the limiting Lyapunov exponent can approach zero even

with "good measurements": simply, take a system with a transfer matrix zero on

the imaginary axis.

A remark on the general nonlinear filtering problem for diffusions seems in

order here: in many cases, the optimal nonlinear filter is well approximated when
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N o - 0 by a linear system: c.f. [3], [4]. In those cases, also the "memory length"

y will exhibit the behavior as above. We omit the details here.
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